本帖最后由 卖真方子的 于 2023-5-10 21:01 编辑
我懂不懂数理逻辑不重要。
既然你八星老板声称不相信上帝,麻烦你用数理逻辑的方法,反驳现代最伟大的数理逻辑学家之一哥德尔关与“上帝存在”的证明。
哥德尔:上帝存在的本体论证明。
英文本可参考 StanfordEncyclopedia of Philosophy: Gödel’s Ontological Argument. 证明涉及模态逻辑, 引入了 ‘□’ (必然)和 ‘◇’ (可能) 两个算子. 有 把证明抄在下面: 公理1: 一个性质是肯定的当且仅当它的否定是否定的. Axiom 1: If aproperty is positive, then its negation is not positive. Pos(ψ)↔ ﹁Pos(﹁ψ) 公理2: 肯定性质蕴涵的性质必肯定. Axiom 2: Anyproperty entailed by - i.e., strictly implied by - a positive property ispositive. □∀x{[φ(x)→ψ(x)]∧Pos(φ)}→Pos(ψ) 定理1: 一个肯定性质是逻辑上一致的(可能有某个实例). Theorem 1: If a propertyis positive, then it is consistent, i.e., possibly exemplified. Pos(φ)→◇∃x φ(x) 定义1: 某物是类上帝的当且仅当它具备所有的肯定性质. Definition 1: x isGod-like iff x has as essential properties those and only those propertieswhich are positive. G(x)↔∀φ[Pos(φ)→φ(x)] 公理3: “是类上帝的”是一个肯定性质. Axiom 3: Theproperty of being God-like is positive. Pos(G) 推论1: “是类上帝的”是一致的(可能有某个实例, 即上帝可能存在) Corollary 1: Theproperty of being God-like is consistent. ◇∃x G(x) 公理4: 一个肯定性质是必然肯定的. Axiom 4: If aproperty is positive, then it is necessarily positive. Pos(φ)→□Pos(φ) 定义2: 性质 φ 是 x 的本质, 当且仅当 x 满足 φ 且对 x 的任意性质 ψ , φ 蕴涵 ψ. Definition 2: φ is anessence of x iff for every property ψ, x has ψ necessarily iff φ entails ψ. φ ess x ↔φ(x)∧∀ψ{ψ(x)→□∀x[φ(x)→ψ(x)]} 定理2: 如果 x 是类上帝的, 那么类上帝的是 x 是的本质. Theorem 2: Ifsomething is God-like, then the property of being God-like is an essence of thatthing. G(x)→G ess x 定义3: x 必然存在, 如果 x 的本质都必然有某个实例. Definition 3: xnecessarily exists iff every essence of x is necessarily exemplified. NE(x)↔∀φ[φ ess x → □∃xφ(x)] 公理5: “是必然存在”是肯定的. Axiom 5: Necessaryexistence is positive Pos(NE) 定理3: 必然有某个 x, x 是类上帝的. Theorem 3:Necessarily, the property of being God-like is exemplified. □∃xG(x)
|